The error-free component of the RAD6/RAD18 DNA damage tolerance pathway of budding yeast employs sister-strand recombination.

نویسندگان

  • Hengshan Zhang
  • Christopher W Lawrence
چکیده

Evidence for an error-free DNA damage tolerance process in eukaryotes (also called postreplication repair) has existed for more than two decades, but its underlying mechanism, although known to be different from that in prokaryotes, has remained elusive. We have investigated this mechanism in Saccharomyces cerevisiae, in which it is the major component of the RAD6/RAD18 pathway, by transforming an isogenic set of rad1Delta excision-defective strains with plasmids that carry a single thymine-thymine pyrimidine (6-4) pyrimidinone photoadduct in each strand at staggered positions 28 base pairs apart. C-C mismatches placed opposite each of the T-T photoproducts permit unambiguous detection of the events that can lead to the completion of replication: sister-strand recombination or translesion replication on one or the other strand. Despite the severe block to replication that these lesions impose, we find that more than half of the plasmids were fully replicated in a rad1Delta strain and that >90% of them achieved this end by recombination between partially replicated sister strands within the interlesion region. Approximately 60-70% of these events depended on the error-free component of the RAD6/RAD18 pathway, with the remaining events depended on RAD52; these two processes account for almost all of the recombination, which depended neither on DNA polymerase zeta nor on mismatch repair. We conclude that the error-free component of the RAD6/RAD18 pathway completes replication by a mechanism employing recombination between partially replicated sister strands, possibly by means of transient template strand switching or copy choice.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

RAD6-RAD18-RAD5 pathway-dependent tolerance to chronic low-dose UV light

In nature, organisms are exposed to chronic low-dose UV (CLUV) as opposed to the acute high doses common to laboratory experiments. Analysis of the cellular response to acute high-dose exposure has delineated the importance of direct DNA repair by the nucleotide excision repair pathway and for checkpoint-induced cell cycle arrest in promoting cell survival. Here we examine the response of yeast...

متن کامل

DNA repair defects channel interstrand DNA cross-links into alternate recombinational and error-prone repair pathways.

The repair of psoralen interstrand cross-links in the yeast Saccharomyces cerevisiae involves the DNA repair groups nucleotide excision repair (NER), homologous recombination (HR), and post-replication repair (PRR). In repair-proficient yeast cells cross-links induce double-strand breaks, in an NER-dependent process; the double-strand breaks are then repaired by HR. An alternate error-prone rep...

متن کامل

Analysis of the Tolerance to DNA Alkylating Damage in MEC1 and RAD53 Checkpoint Mutants of Saccharomyces cerevisiae

Checkpoint response, tolerance and repair are three major pathways that eukaryotic cells evolved independently to maintain genome stability and integrity. Here, we studied the sensitivity to DNA damage in checkpoint-deficient budding yeast cells and found that checkpoint kinases Mec1 and Rad53 may modulate the balance between error-free and error-prone branches of the tolerance pathway. We have...

متن کامل

Physical and functional interaction between WRNIP1 and RAD18.

WRN interacting protein 1 (WRNIP1) was originally identified as a protein that interacts with the Werner syndrome responsible gene product (WRN). WRNIP1 is a highly conserved protein from E. coli to humans. Genetic studies in budding yeast suggested that the yeast orthlog of WRNIP1, Mgs1, may function in a DNA damage tolerance pathway that is similar to, but distinct from, the template-switch d...

متن کامل

The Role of PCNA Posttranslational Modifications in Translesion Synthesis

Organisms are predisposed to different types in DNA damage. Multiple mechanisms have evolved to deal with the individual DNA lesions. Translesion synthesis is a special pathway that enables the replication fork to bypass blocking lesions. Proliferative Cell Nuclear Antigen (PCNA), which is an essential component of the fork, undergoes posttranslational modifications, particularly ubiquitylation...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 102 44  شماره 

صفحات  -

تاریخ انتشار 2005